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 This article introduces several mathematical formulations for the joint order 

picking problem (JOPP) in low-level picker-to-part warehousing systems.  

In order to represent real warehousing environments, the proposed models 

minimize performance measures such as travel distance, travel time and 
tardiness, considering multi-block warehouses, due dates, and multiple 

pickers. The number of constraints and decision variables required for each 

proposed model is calculated, demonstrating the complexity of solving 

medium and long-sized problems in reasonable computing time using exact 

methods, so it is still recommendable to solve these JOPP using 
metaheuristics. The proposed models can be followed as a reference for new 

solution methods that yield efficient and fast solutions. 
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1. INTRODUCTION 

Within warehouse operations, the order picking is responsible for retrieving products from shelves 

to fulfill customer orders, while pickers use a picking device through the warehouse. Thus, poor picking 

performance results in non-fulfillment of deliveries  to customers, incorrect shipments, high labor costs,  

and additional shipping costs [1]. This is even more evident in picker-to-part systems, where the order 

picking becomes a repetitive and labor-intensive process [2] generating between 50-70% of the operating 

costs of a warehouse [3]. Therefore, in the field of warehouse management, it is valuable to optimize all  

the activities related to order picking in warehouses and distribution centers. 

In order to optimize order picking operations, several problems like the order batching problem 

(OBP), batch sequencing problem (BSP), batch assignment problem (BAP), and picker routing problem 

(PRP) must be solved. The OBP groups or combines several customer orders into ba tches [4], thus reducing  

the traveled distance and the picking time [3]. The BSP schedules the sequence for batches, while the BAP 

assigns batches to the available pickers to minimize tardiness [5]. The PRP plans tours to be followed  

by the pickers to retrieve all the items from the assigned batches in the shortest time and distance [6]. 

Typically, order picking problems are solved individually in the literature but recently have been 

addressed jointly, because grouping orders in batches and sequencing batches affect both the planning  

of picking tours and the due dates compliance. However, solving joint o rder picking problems implies  

a challenge to propose rapid and practical solutions, especially when considering realistic warehouse 

features. Given that the number of orders in picking operations tends to be high, and the products and items 
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required by order are complex and diverse, the OBP, BSP, BAP, and PRP are considered NP-Hard  

problems [7]. 

Consequently, it is necessary to propose mathematical formulations that allow identifying  

the fundamental constraints and variables in the JOPP, considering realistic warehous ing environments like 

orders with due dates, multiple-block layouts, and multiple pickers with picking devices to fulfill objective 

functions considering the travel distance, travel time and tardiness. In this way, the recent study of [8] 

formulates the joint order batching, routing and picker scheduling problem to minimize the total order pick 

time assuming certain conditions to guarantee the applicability in practice in a spare parts warehouse.  

However, it is necessary to formulate equations for minimum distances and travel times between all 

the picking locations to facilitate the formulation of the PRP as a classic TSP in single -block and multi-block 

warehouses and propose variations of joint order picking problems specifying different objective functions 

and operation assumptions. Likewise, it is required to compute how many variables and restrictions  

are generated by each mathematical formulation to establish the size of a JOPP and decide if it is reasonable 

to solve it by using exact or approximate methods. 

Based on the abovementioned, this article focuses on formulating several JOPP for low-level  

picker-to-part systems taking into account several features of warehouses and distribution centers and shows  

the complexity of these problems by calculating the number of cons traints and variables involved. 

Likewise, this study provides minimum distances and travel times between pickin g locations to solve 

the routing problem as a TSP. Therefore, through objective functions, constraints, and variables, this study 

provides mathematical formulations for joint order picking models to guide researchers focused on finding 

exact solutions to small-sized problems or approximate solutions using approximate methods  

such as metaheuristics  

 

 

2. PROPOSED METHOD 

In low-level picker-to-part systems, pickers travel through the picking aisles and retrieve items 

placed in the first height level, so vertical movements are neglected. In this manner, the PRP is solved as  

a Steiner TSP (STSP) and is considered as a class ical TSP, which is NP-Hard [9], when the minimum 

distances for all nodes (picking locations) are computed [10]. These distances are measured by Manhattan 

distances.Therefore, the Manhattan distance 𝑑𝑖𝑗 between two picking locations i and j in a single-block 

warehouse is calculated using (1), where R and F respectively represent the y -coordinate of the rear and front 

of the warehouse layout. 

           

𝑑𝑖𝑗 = {
|𝑥 𝑖− 𝑥𝑗|+ |𝑦𝑖 − 𝑦𝑗|, if 𝑖 and 𝑗 belong to the same picking aisle

|𝑥 𝑖− 𝑥𝑗| + 𝑚𝑖𝑛{|𝑦𝑖 − 𝑅| + |𝑅 − 𝑦𝑗|, |𝑦𝑖 − 𝐹|+ |𝐹 − 𝑦𝑗 |}, otherwise
  𝑓𝑜𝑟 1

≤ 𝑖 ≠ 𝑗 ≤ 𝐿 

(1) 

 

In multi-block warehouses, where 𝑚, 𝑛 ∈ 𝐻 and 𝐻 is the number of blocks, (2) calculates the distance 𝑑𝑖𝑚𝑗𝑛  

between picking location i belonging to block m and picking location j belonging to block n.  

           

𝑑𝑖𝑚𝑗𝑛 = {
|𝑥𝑖𝑚 −𝑥𝑗𝑛| + |𝑦𝑖𝑚 − 𝑦𝑗𝑛|, if 𝑖 and 𝑗 belong to the same picking aisle

|𝑥𝑖𝑚 − 𝑥𝑗𝑛| + 𝑚𝑖𝑛{|𝑦𝑖𝑚 −𝑅| + |𝑅 − 𝑦𝑗𝑛|, |𝑦𝑖𝑚 − 𝐹| + |𝐹 −𝑦𝑗𝑛|}, otherwise
  𝑓𝑜𝑟 1

≤ 𝑖 ≠ 𝑗 ≤ 𝐿 

(2) 

 

Given 𝑣 as the speed of the picking device, (3) computes the travel time 𝑡𝑖𝑗  between i and j for a single-block 

warehouse. 

           

𝑡𝑖𝑗 =

{
 
 

 
 |𝑥 𝑖− 𝑥𝑗| + |𝑦𝑖 − 𝑦𝑗 | 

𝑣
, if 𝑖 and  𝑗 belong to the  same picking aisle

|𝑥 𝑖− 𝑥𝑗|+ 𝑚𝑖𝑛{|𝑦𝑖 − 𝑇| + |𝑇 − 𝑦𝑗 |, |𝑦𝑖 − 𝐵| + |𝐵 − 𝑦𝑗|}

𝑣
, otherwise

  𝑓𝑜𝑟 1

≤ 𝑖 ≠ 𝑗 ≤ 𝐿 

(3) 

 

Similarly, for multi-block warehouses, the travel time 𝑡𝑖𝑗  between picking location i belonging to block m 

and picking location j belonging to block n is calculated using (4). 
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𝑡𝑖𝑗

=

{
 
 

 
 |𝑥 𝑖𝑚 − 𝑥𝑗𝑛 |+ |𝑦𝑖𝑚 − 𝑦𝑗𝑛 | 

𝑣
, if 𝑖 and 𝑗 belong  to the  same picking aisle

|𝑥 𝑖𝑚 − 𝑥𝑗𝑛 | + 𝑚𝑖𝑛{|𝑦𝑖𝑚 − 𝑅| + |𝑅 − 𝑦𝑗𝑛 |, |𝑦𝑖𝑚 − 𝐹| + |𝐹 − 𝑦𝑗𝑛 |}

𝑣
, otherwise

  𝑓𝑜𝑟 1

≤ 𝑖 ≠ 𝑗 ≤ 𝐿 

(4) 

 

Consequently, (1-4) provide the minimum distance and travel time between picking locations  

for single-block and multiple-block warehouses, allowing formulating the PRP as a TSP within joint order 

picking problems. Additionally, the following assumptions are considered for the formulation  

of the proposed JOPP models:All tours start and end at the depot; Each picker has a picking device assigned; 

picking devices present homogenous speed and capacity; the width of picking aisles is sufficient to allow 

picking devices crossing aisles in both directions, so picker blocking is not considered; the capacity  

of a picking device is greater than the size of a batch; order splitting is not considered; the information about 

customer orders is available before the order picking planning. 

Based on (1-4) for travel distance and travel time, and the aforementioned assumptions, 

mathematical models are proposed for the joint order batching and picker routing problem (JOBRP), joint 

order batching, batch assignment and picker routing problem with multiple pickers (JOBARP), and joint 

order batching, batch assignment, batch sequencing, and picker routing problem (JOBASRP). Indices, sets, 

parameters, and decision variables considered for these JOPP are mentioned below. 

 

Sets and parameters 

𝐵 is the set of batches 

𝐾 is the set of orders 

𝐿 is the set of storage locations  

𝑃 is the set of picking devices  

𝐺 is the set of scheduling positions  

𝑆 is a subset of storage locations  

𝑑𝑖𝑗 is the distance between picking locations  i 

and j 

𝑡𝑖𝑗
𝑝

 is the travel time between picking locations i 

and j 

𝐶  is the capacity of a picking device 

𝑤𝑘  is the capacity requirement of order k  

𝑣 is the horizontal velocity of a picking device 

𝑑𝑑𝑘 is the due date of order k  

𝑠𝑖𝑘 =

{
1, 𝑖𝑓 𝑎𝑛  𝑖𝑡𝑒𝑚 𝑖𝑛 𝑜𝑟𝑑𝑒𝑟  𝑘 𝑖𝑠 𝑝𝑖𝑐𝑘𝑒𝑑  𝑓𝑟𝑜𝑚 𝑖;

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
  

Decision variables 

𝑋𝑘
𝑏 = {

1, 𝑖𝑓 𝑜𝑟𝑑𝑒𝑟  𝑘 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑  𝑡𝑜 𝑏𝑎𝑡𝑐ℎ  𝑏;
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 .

 

    

𝑉𝑝
𝑏 = {

1, 𝑖𝑓 𝑏𝑎𝑡𝑐ℎ  𝑏 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑  𝑡𝑜 𝑝𝑖𝑐𝑘𝑖𝑛𝑔 𝑑𝑒𝑣𝑖𝑐𝑒  𝑝;
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 .

  

𝑌𝑖𝑗
𝑏 = {

1, 𝑖𝑓 𝑖 𝑖𝑠 𝑣𝑖𝑠𝑖𝑡𝑒𝑑  𝑑𝑖𝑟𝑒𝑐𝑡𝑙𝑦  𝑎𝑓𝑡𝑒𝑟 𝑗 𝑖𝑛 𝑏𝑎𝑡𝑐ℎ  𝑏;
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 .

  

𝑍𝑖
𝑏 = {

1, 𝑖𝑓 𝑖 𝑖𝑠 𝑣𝑖𝑠𝑖𝑡𝑒𝑑  𝑖𝑛 𝑏𝑎𝑡𝑐ℎ 𝑏;
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 .

  

𝑅𝑔𝑝
𝑏 =

{
1, 𝑖𝑓 𝑏 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑  𝑡𝑜 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛  𝑔 𝑖𝑛 𝑝𝑖𝑐𝑘𝑖𝑛𝑔  𝑑𝑒𝑣𝑖𝑐𝑒 𝑝;

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 .
  

𝑐𝑔
𝑝
  Completion time for a batch in position g in device p 

𝑐𝑘 Completion time of order k  

𝜏𝑘   Tardiness of order k  

 

 

3. RESEARCH METHOD 

The following JOPP formulations are based on mathematical programming models, proposing  

an objective function to optimize and constraints using decision variables to integrate the order picking 

problems addressed in the JOBRP, JOBARP, and JOBASRP. According to the constraints posed for each 

JOPP, the calculation of the binary variables, continuous variables, and constraints is presented  

 

3.1.  JOBRP to minimize total traveled distance 

The proposed formulation for the JOBRP is based on [11, 12], and its formulation was verified  

with similar models proposed by [13, 14]. Within order picking activities, transportation involves more than 

50% of the time and cost for completing orders [3], for this reason, the reduction of travel times represents  

a potential for improving the picking process, and reduce activities that do not add value. Therefore,  

the JOBRP aims to minimize the travel distance to improve the operational efficiency of warehouses. Then, 

the JOBRP can be formulated as follows  

           

𝑀𝑖𝑛  𝑍 = ∑ ∑ ∑ 𝑑𝑖𝑗 ∗ 𝑌𝑖𝑗
𝑏

𝑗≠𝑖∈𝐿𝑖≠𝑗∈𝐿𝑏 ∈𝐵  (5) 
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∑ 𝑋𝑘
𝑏

𝑏∈𝐵 = 1        ∀𝑘 ∈ 𝐾 (6) 
∑ 𝑤𝑘 ∗ 𝑋𝑘

𝑏
𝑘∈𝐾 ≤ 𝐶        ∀𝑏 ∈ 𝐵 (7) 

 

𝑍𝑖
𝑏 ≥ 𝑠𝑖𝑘 ∗ 𝑋𝑘

𝑏          ∀𝑏 ∈ 𝐵, 𝑘 ∈ 𝐾, 𝑖 ∈ 𝐿 (8) 

 

∑ 𝑌𝑖𝑗
𝑏

𝑗∈𝐿 ,   𝑗≠𝑖 = 𝑍𝑖
𝑏        ∀𝑏 ∈ 𝐵, 𝑖 ∈ 𝐿 (9) 

 
∑ 𝑌𝑖𝑗

𝑏
𝑖∈𝐿,   𝑖≠𝑗 = 𝑍𝑗

𝑏        ∀𝑏 ∈ 𝐵, 𝑗 ∈ 𝐿 (10) 

 
∑ 𝑌𝑖𝑗

𝑏
𝑖∈𝑆,   𝑗∈𝐿∖𝑆 ≥ 𝑍𝑖

𝑏        ∀𝑏 ∈ 𝐵, 𝑆 ⊂ 𝐿 (11) 

 

𝑋𝑘
𝑏 , 𝑌𝑖𝑗

𝑏, 𝑍𝑖
𝑏 ∈ {0,1}  ∀𝑏 ∈ 𝐵, 𝑘 ∈ 𝐾, 𝑖, 𝑗 ∈ 𝐿 (12) 

 

The (5) optimizes the total traveled distance. Constraints (6) ensure that each customer order  

is processed in exactly one route, while constraints (7) guarantee to satisfy the capacity of the picking dev ice. 

Constraints (8) ensure that a picking position is visited only once per batch, and join the OBP with the PRP. 

Constraints (9) and (10) enforce that each picking location is visited once in each batch, and guarantee only 

one predecessor and successor to each picking location, while constraints (11) aims to prevent any sub-tour 

of the TSP. Constraints (12) are the domain restrictions on the decision variables. This model consists of 
|𝐾||𝐵| + |𝐵||𝐿| + |𝐵||𝐿|2 binary variables, zero continuous variables, and |𝐾| + |𝐵| + |𝐾||𝐵| + 2|𝐵||𝐿| +
|𝐾||𝐵||𝐿|+ 2|𝐵||𝐿|2 constraints. The final term of constraint calculation is due to constraints (11). 

 

3.2.  JOBARP to minimize total travel time 

The proposed model for the JOBARP differs primarily from the JOBRP as it considers multiple 

pickers that simultaneously retrieve products to satisfy customer orders, as is the case in real environments 

for medium and large-sized warehouses. Therefore, it is necessary to consider the assignment of batches to 

multiple pickers to recover all customer orders in the shortest possible time, thus improving operational 

efficiency and customer service. The JOBARP model is based on the proposals of [15, 16], and was 

complemented with the proposals of [17] that also address models with multiple pickers. The JOBARP can 

then be formulated as follows. 

 

𝑀𝑖𝑛  𝑍 = ∑ ∑ ∑ ∑ 𝑡𝑖𝑗
𝑝
∗ 𝑉𝑝

𝑏 ∗ 𝑌𝑖𝑗
𝑏

𝑗≠𝑖∈𝐿𝑖≠𝑗∈𝐿𝑏∈𝐵𝑝∈𝑃  (13) 

 
∑ 𝑋𝑘

𝑏
𝑘∈𝐾 = 1        ∀𝑘 ∈ 𝐾 (14) 

 
∑ 𝑉𝑝

𝑏
𝑝∈𝑃 = 1        ∀𝑏 ∈ 𝐵 (15) 

 
∑ 𝑤𝑘 ∗ 𝑋𝑘

𝑏 ∗ 𝑉𝑝
𝑏

𝑘∈𝐾 ≤ 𝐶        ∀𝑏 ∈ 𝐵, 𝑝 ∈ 𝑃  (16) 

 

𝑍𝑖
𝑏 ≥ 𝑠𝑖𝑘 ∗ 𝑋𝑘

𝑏          ∀𝑏 ∈ 𝐵, 𝑘 ∈ 𝐾, 𝑖 ∈ 𝐿 (17) 

 
∑ 𝑌𝑖𝑗

𝑏
𝑗∈𝐿 ,   𝑗≠𝑖 = 𝑍𝑖

𝑏        ∀𝑏 ∈ 𝐵, 𝑖 ∈ 𝐿 (18) 

 
∑ 𝑌𝑖𝑗

𝑏
𝑖∈𝐿,   𝑖≠𝑗 = 𝑍𝑗

𝑏        ∀𝑏 ∈ 𝐵, 𝑗 ∈ 𝐿 (19) 

 
∑ 𝑌𝑖𝑗

𝑏
𝑖∈𝑆,   𝑗∈𝐿∖𝑆 ≥ 𝑍𝑖

𝑏        ∀𝑏 ∈ 𝐵, 𝑆 ⊂ 𝐿 (20) 

 

𝑋𝑘
𝑏 , 𝑌𝑖𝑗

𝑏, 𝑍𝑖
𝑏, 𝑣𝑝

𝑏 ∈ {0,1}  ∀𝑝 ∈ 𝑃, 𝑏 ∈ 𝐵, 𝑘 ∈ 𝐾, 𝑖, 𝑗 ∈ 𝐿 (21) 

 

The objective function (13) of the JOBARP minimizes the total travel time. Constraints (14) ensure 

each customer order is grouped in only one batch, while constraints (15) ensure each batch is assigned  

to exactly one picking device. Constraints (16) ensure the capacity of a picking device is not exceeded. 

Constraints (17) show that a picking location can be passed only once by the customer order k in batch b,  

and directly relates the order batching problem with the routing picking problem. Constraints (18) and (19) 

ensure the uniqueness of the picking route by arranging a predecessor and one successor to each picking 

position. Constraints (20) ensure a complete picking route, avoiding sub -tours in the TSP. Constraints (21) 

are the domain restrictions on the decision variables. Furthermore, this model consists of  |𝐾||𝐵| + |𝐵||𝐿| +
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|𝐵||𝑃| + |𝐵||𝐿|2 binary variables, zero continuous variables, and |𝐾| + |𝐵| + |𝐾||𝐵| + 2|𝐵||𝐿| + 2|𝐵||𝑃| +
|𝐾||𝐵||𝐿|+ 2|𝐵||𝐿|2 constraints. The final term of constraint calculation is due to constraints (20). 

 

3.3. JOBASRP to minimize total tardiness 

Although some studies have focused on minimizing the traveled distances [11], or the maximum 

completion time of customer orders [1], it has been detected that minimizing the tardiness tends  

to be the best-suited performance measure for warehouse optimization problems [8, 18], because tardiness 

takes into account customer satisfaction, and by minimizing tardiness customer orders can be delivered  

on agreed due dates [7]. Therefore, the proposed model for the JOBASRP considers due dates and is based 

on the proposals of [7, 19]. Some elements were also extracted from the models of [10], who minimize 

tardiness and consider multiple pickers. Due to batches must be sequenced in each picking device  

in the JOBASRP, it is necessary to use Equation (3) and Equation (4) to compute the travel time for ea ch 

picking device for single-block and multi-block warehouses. The JOBASRP can be formulated as follows. 

 

𝑀𝑖𝑛  𝑍 = ∑ 𝜏𝑘𝑘∈𝐾  (22) 

 
∑ 𝑅𝑔𝑝

𝑏
𝑏∈𝐵 ≤ 1        ∀𝑔 ∈ 𝐺, 𝑝 ∈ 𝑃 (23) 

 
∑ ∑ ∑ 𝑋𝑘

𝑏
𝑏∈𝐵 ∗ 𝑅𝑔𝑝

𝑏
𝑔∈𝐺𝑝∈𝑃 = 1        ∀𝑘 ∈ 𝐾 (24) 

 
∑ 𝑤𝑘 ∗ 𝑋𝑘

𝑏
𝑘∈𝐾 ∗ 𝑅𝑔𝑝

𝑏 ≤ 𝐶        ∀𝑏 ∈ 𝐵, 𝑝 ∈ 𝑃, 𝑔 ∈ 𝐺 (25) 

 

𝑍𝑖
𝑏 ≥ 𝑠𝑖𝑘 ∗ 𝑋𝑘

𝑏          ∀𝑏 ∈ 𝐵, 𝑘 ∈ 𝐾, 𝑖 ∈ 𝐿 (26) 

 

∑ 𝑌𝑖𝑗
𝑏

𝑗∈𝐿 ,   𝑗≠𝑖 = 𝑍𝑖
𝑏        ∀𝑏 ∈ 𝐵, 𝑖 ∈ 𝐿 (27) 

 

∑ 𝑌𝑖𝑗
𝑏

𝑖∈𝐿,   𝑖≠𝑗 = 𝑍𝑗
𝑏        ∀𝑏 ∈ 𝐵, 𝑗 ∈ 𝐿 (28) 

 
∑ 𝑌𝑖𝑗

𝑏
𝑖∈𝑆,   𝑗∈𝐿∖𝑆 ≥ 𝑍𝑖

𝑏        ∀𝑏 ∈ 𝐵, 𝑆 ⊂ 𝐿 (29) 

 

∑ (𝑅1𝑝
𝑏 ∗ ∑ ∑ 𝑡𝑖𝑗

𝑝
∗ 𝑌𝑖𝑗

𝑏
𝑗≠𝑖∈𝐿𝑖≠𝑗∈𝐿 )𝑏∈𝐵 ≤ 𝒄𝟏

𝒑
   ∀𝑝 ∈ 𝑃 (30) 

 

𝑐𝑔−1
𝑝

+∑ (𝑅𝑔𝑝
𝑏 ∗ ∑ ∑ 𝑡𝑖𝑗

𝑝
∗ 𝑌𝑖𝑗

𝑏
𝑗≠𝑖∈𝐿𝑖≠𝑗∈𝐿 )𝑏∈𝐵  ≤ 𝑐𝑔

𝑝
       ∀𝑝 ∈ 𝑃, 𝑔 ∈ 𝐺 ∖ {1} (31) 

 

𝑐𝑘 = ∑ ∑ ∑ 𝑋𝑘
𝑏 ∗ 𝑅𝑘𝑝

𝑏 ∗ 𝑐𝑔
𝑝

𝑏∈𝐵𝑔∈𝐺𝑝∈𝑃      ∀𝑘 ∈ 𝐾 (32) 

 

𝜏𝑘 = 𝑚𝑎𝑥{0, 𝑐𝑘 − 𝑑𝑑𝑘}     ∀𝑜 ∈ 𝑂 (33) 

 

𝑐𝑔
𝑝
, 𝑐𝑘, 𝜏𝑘, ≥ 0      ∀𝑔 ∈ 𝐺, 𝑝 ∈ 𝑃, 𝑘 ∈ 𝐾 (34) 

 

𝑋𝑘
𝑏 , 𝑌𝑖𝑗

𝑏, 𝑍𝑖
𝑏, 𝑅𝑔𝑝

𝑏 ∈ {0,1}  ∀𝑔 ∈ 𝐺, 𝑝 ∈ 𝑃, 𝑏 ∈ 𝐵, 𝑘 ∈ 𝐾, 𝑖, 𝑗 ∈ 𝐿 (35) 

 

The objective function (22) minimizes the total tardiness of all customer orders. Constra ints (23) 

ensure that each batch is scheduled at exactly one position in exactly one picking device, while constraints 

(24) ensure that each customer order has to be served in one tour. Constraints (25) guarantee to satisfy  

the capacity of each picking device. Constraints (26) show that a picking location can be passed only once  

by the customer order k in batch b.  Constraints (27-29) are typical constraints in TSP ensuring the solution 

represents a Hamilton cycle [13]. Constraints (29) ensure a complete picking route, avoiding sub-tours  

in the TSP. Equations (30) determine the completion time of the first batch of each order picker, while 

Equations (31) guarantee that two batches do not overlap and ensure time feasibility. Constraints (32) ensure 

the completion time of customer orders grouped in a batch equals the completion time of this batch. 

Constraints (33) define the tardiness of each order. Constraints (34), (35) are the domain and non-negativity 

restrictions on the decision variables. 

Likewise, constraints (24), (25) join the OBP with the batch assignment and batch sequencing, 

constraints (26) join the OBP with the PRP, and constraints (30), (31) join the batch assignment and batch 

sequencing problem with the picker routing problem. Additionally, this model consists of |𝐾||𝐵| + |𝐵||𝐿| +
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|𝐵||𝐿|2+ |𝐵||𝐺||𝑃| binary variables, 2|𝐾| + |𝐺||𝑃| continuous variables, and 5|𝐾| + |𝐾||𝐵| + 3|𝐺||𝑃| +
2|𝐵||𝐺||𝑃| + 2|𝐵||𝐿|2 + |𝐾||𝐵||𝐿| constraints. 

 

 

4. RESULTS AND DISCUSSION 

This section analyzes the size of the proposed models based on the warehouse -size (storage 

locations) and operational volume (customer orders). When considering 50 customer orders and 5 picking 

devices, Figure 1 shows how binary variables and constraints g row exponentially as the warehouse-size 

increases for the JOBRP, JOBARP and JOBASRP. This is mainly due to the quadratic elements |𝐵||𝐿|2  

in the calculation of binary variables and constraints in the JOPP models. 

 

 

 
 

 

 
 

Figure 1. Number of constraints and binary variables vs storage locations and customer orders  

 

 

Likewise, Figure 1 shows how binary variables and constraints grow exponentially as the number  

of customer orders increases for the proposed models when considering a warehouse with 200 storage 

locations and 5 picking devices. This is caused by elements such as |𝐾||𝐵| and |𝐾||𝐵||𝐿| since the maximum 

number of batches B is equal to the total number of customer orders K, thus representing quadratic 
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components in the calculation of constraints. On the other hand, binary variables do not manage to show 

exponential growth in spite of presenting quadratic elements |𝐾||𝐵|, it is because the elements |𝐵||𝐿|2 
mainly determines the number of binary variables, especially in medium and large -size warehouses  

with 500-3,000 storage locations. 

Analyzing the difference between the proposed models, the JOBARP presents 2|𝐵||𝑃| more 

constraints and |𝐵||𝑃|  more binary variables than the JOBRP model, so both problems can be considered 

similar in size, since, in large-size problems considering 200 orders (200 batches) and 5 picking devices,  

the models will differ in 2,000 constraints and 1,000 binary variables. Since the maximum number of batches 

and scheduling positions to assign a batch in a picking vehicle is equal to the number of customer orders,  

the JOBASRP model presents 3|𝐾| + |𝐾||𝑃| + 2|𝑃||𝐾|2 more constraints and |𝐾| 2|𝑃| − |𝐾| |𝑃| more binary 

variables than the JOBARP model. Thus, when considering 200 customer orders and 5 picking devices,  

the models will differ in 400,200 constraints and 199,000 binary variables; however, this will only represent 

an increase of 1.66% in the number constraints and 2.48% in the number of binary variables in a problem 

considering a warehouse with 200 storage locations. Consequently, adding features such as due dates  

for the calculation of completion times and tardiness, and multiple pickers does not significantly affect  

the size of a joint order picking problem because the number of binary variables and restrictions increases 

significantly when the warehouse-size (storage locations) and the number of customer orders increase. 

In this sense, finding exact solutions for joint order picking problems in a reasonable time  

is increasingly challenging, thus, the main solution approaches in the literature in rec ent years focus  

on metaheuristics and heuristics methods, as shown in Table 1. Similarly, branch -and-cut methods and other 

exact solution approaches have tried solving the picker routing problem for small and medium-sized 

problems. However, exact methods to solve medium and large-size joint order picking problems have not yet 

been found, especially when considering features of realistic warehouse environments, which is why 

metaheuristic methods prevail as the most suitable option to obtain high -quality solutions in short computing 

times for NP-Hard problems since the decisions made at a joint order picking problem must be taken 

repetitively on a daily basis. The most used metaheuristics for JOPPs are GA to improve total travel paths  

in logistics tasks [20], PSO [21], ACO and SA to solve the TSP [22], VND, VNS, ALNS, and ILS 

algorithms. Likewise, other nature-based metaheuristics could be adapted to solve the JOPP formulated  

in this study to provide efficient solutions in short computing times [23]. 

 

 

Table 1. Solution approaches for joint order picking problems 
Problem Solution approach Realistic warehouse environments Author 

JOBRP 

Savings heuristic and branch-and-cut algorithm Multiple pickers, multi-block warehouse [24] 

Iterated local search (ILS) and heuristic derived from an 
exact solution approach  

Multi-block warehouse [25] 

Batching heuristic and ant colony optimization (ACO) Multi-block warehouse, 3D warehouse [13] 

Order-center and batch-center heuristic, and particle 
swarm optimization (PSO) 

Multi-block warehouse [12] 

PSO and ACO None [11] 
Simulated annealing (SA) and an optimal A*-algorithm Multi-block warehouse, 3D warehouse [26] 

Heuristics improved with a SA, and routing policies None [14] 

Genetic algorithms (GA) 
Due dates, 3D warehouse, multi-
objective approach 

[27] 

JOBARP 

Variable neighborhood descent (VND) and variable 

neighborhood search (VNS) 
Multi-pickers, due dates [19] 

Hybrid rule-based algorithm (batching and assigning 
rules) 

On-line, multiple pickers [16] 

Assignment rules and adaptive large neighborhood search 

(ALNS) 

Multiple pickers, pickers with 

differences in skills 
[15] 

FBLPT -based algorithm and Batching heuristic 
On-line, multiple objective approach, 
multiple delivery vehicles 

[28] 

JOBASRP 

Hybrid-coded GA and ACO algorithm Due dates [7] 
Variable neighborhood descent and Lin-Kernighan-
Helsgaun heuristic 

Multi-pickers, multi-block warehouse, 
due dates 

[10] 

ILS algorithm  
Multi-pickers, multi-block warehouse, 

due dates, 3D warehouse 
[8] 

 

 

Therefore, it is expected that studies and investigations in joint order picking problems will increase, 

including one or several features of realistic warehouse environments mentioned in Table 1, such as online 

customer order arrivals (time windows approaches), multiple pickers, pickers with different skills,  

multi-block warehouses, non-conventional layouts, 3D warehouses, due dates, and approaches considering 

conflicting objectives and a tradeoff between them [29], thus, providing solutions that allow to improve both 
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the operative efficiency (operative costs) and the customer service (on-time deliveries). Likewise, 

it is expected that the proposed models for the JOPP are extended to be more realistic wh en considering 

multiple pickers and congestion in narrow-aisle warehouses, and considering multiple pickers and splitting to 

assign a single batch among several pickers, minimizing makespan [30], tardiness, earliness, and total 

traveled distance. In this way, the models and solutions of the JOPP will be suited to the reality of warehouse 

operations, hence improving the overall efficiency of the supply chains, especially for B2C  

e-commerce companies. 

 

 

5. CONCLUSION 

We have investigated several joint order picking problems for low-level picker-to-part systems 

(JOBRP, JOBARP, and JOBASRP), which are known to be NP-hard. The size of the problems related  

to the proposed formulations for the JOBRP, JOBARP and JOBASRP has been calculated through  

the number of constraints and binary variables according to storage locations and customer orders.  

From these results, we observed the size of JOPPs grows in greater proportion as warehouse -size increases, 

so it is still recommendable to solve these problems using metaheuristics, which have proved to be the best 

solution approach to provide efficient and fast solutions, as required on daily based operations in warehous es  

and distribution centers. Consequently, this work becomes the framework for researchers interested in 

solving JOPPs, providing mathematical models, interactions between variables and the size of the problems 

according to the number of orders and warehouse contableations considered. Therefore, the novel technical 

results of this study are threefold: the proposal of mathematical formulations for several JOPP considering 

minimum travel distances and travel times to model the PRP as a TSP, the calculation of binary variables and 

restrictions to set the NP-Hard nature of these problems according to the number of orders and warehouse 

size and the exploration of different metaheuristic algorithms to adapt to each JOPP. Further research should 

devise formulations for the JOPP considering other realistic warehouse environments such as  

non-conventional warehouse layouts, 3D warehouses, pickers with heterogeneous skills, online approaches, 

multi-objective approaches, congestion, and splitting, and even integrate joint order picking operations with 

shipping and delivery operations. 
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